Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.455
Filtrar
1.
Nutrients ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38613124

RESUMO

Eriocitrin, a flavanone found in peppermint and citrus fruits, is known to possess many physiological activities. However, the anti-angiogenic effects of eriocitrin are yet to be fully elucidated. Therefore, the objective of this research was to explore the anti-angiogenic effects of eriocitrin both in vitro and in vivo as well as its underlying mechanism. Anti-angiogenic effects of eriocitrin were evaluated utilizing in vitro models of angiogenesis, including inhibition of tube formation, and induction of apoptosis in human umbilical vein endothelial cells (HUVECs). A chorioallantoic membrane (CAM) assay in chick embryos was also performed to evaluate the in vivo effects of eriocitrin on angiogenesis. Results showed significant eriocitrin effects on proliferation, tube formation, migration, and apoptosis in HUVECs. Furthermore, in vivo analysis revealed that eriocitrin significantly suppressed the formation of new blood vessels. In particular, it regulated MAPK/ERK signaling pathway and VEGFR2, inhibited the downstream PI3K/AKT/mTOR signaling pathway, and activated apoptosis signals such as caspase cascades. In HUVECs, the expression of matrix metalloproteinases (MMP-2 and MMP-9) exhibited an inhibitory effect on angiogenesis through the suppression of the signaling pathway. Therefore, eriocitrin presents potential for development into an antiangiogenic therapeutic agent.


Assuntos
Flavanonas , Fosfatidilinositol 3-Quinases , Embrião de Galinha , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt , 60489 , Células Endoteliais , Transdução de Sinais , Serina-Treonina Quinases TOR , Inibidores da Angiogênese/farmacologia
3.
J Transl Med ; 22(1): 358, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627718

RESUMO

BACKGROUND: Diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. This study aimed to develop and evaluate an OCT-omics prediction model for assessing anti-vascular endothelial growth factor (VEGF) treatment response in patients with DME. METHODS: A retrospective analysis of 113 eyes from 82 patients with DME was conducted. Comprehensive feature engineering was applied to clinical and optical coherence tomography (OCT) data. Logistic regression, support vector machine (SVM), and backpropagation neural network (BPNN) classifiers were trained using a training set of 79 eyes, and evaluated on a test set of 34 eyes. Clinical implications of the OCT-omics prediction model were assessed by decision curve analysis. Performance metrics (sensitivity, specificity, F1 score, and AUC) were calculated. RESULTS: The logistic, SVM, and BPNN classifiers demonstrated robust discriminative abilities in both the training and test sets. In the training set, the logistic classifier achieved a sensitivity of 0.904, specificity of 0.741, F1 score of 0.887, and AUC of 0.910. The SVM classifier showed a sensitivity of 0.923, specificity of 0.667, F1 score of 0.881, and AUC of 0.897. The BPNN classifier exhibited a sensitivity of 0.962, specificity of 0.926, F1 score of 0.962, and AUC of 0.982. Similar discriminative capabilities were maintained in the test set. The OCT-omics scores were significantly higher in the non-persistent DME group than in the persistent DME group (p < 0.001). OCT-omics scores were also positively correlated with the rate of decline in central subfield thickness after treatment (Pearson's R = 0.44, p < 0.001). CONCLUSION: The developed OCT-omics model accurately assesses anti-VEGF treatment response in DME patients. The model's robust performance and clinical implications highlight its utility as a non-invasive tool for personalized treatment prediction and retinal pathology assessment.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/complicações , Edema Macular/diagnóstico por imagem , Edema Macular/tratamento farmacológico , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/tratamento farmacológico , Estudos Retrospectivos , Tomografia de Coerência Óptica/efeitos adversos , Tomografia de Coerência Óptica/métodos , 60570 , Fatores de Crescimento do Endotélio Vascular , Aprendizado de Máquina , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Injeções Intravítreas , Diabetes Mellitus/tratamento farmacológico
4.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611849

RESUMO

The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/ß-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinases , Imunoterapia , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico
5.
Cell Death Dis ; 15(3): 237, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555280

RESUMO

End-stage nasopharyngeal carcinoma (NPC) has unsatisfactory survival. The limited benefit of chemotherapy and the scarcity of targeted drugs are major challenges in NPC. New approaches to treat late-stage NPC are urgently required. In this study, we explored whether the dual PI3K/mTOR inhibitor, PQR309, exerted a favorable antineoplastic effect and sensitized the response to gemcitabine in NPC. We observed that PI3K expression was positive and elevated in 14 NPC cell lines compared with that in normal nasopharygeal cell lines. Patients with NPC with higher PI3K levels displayed poorer prognosis. We subsequently showed that PQR309 alone effectively decreased the viability, invasiveness, and migratory capability of NPC cells and neoplasm development in mice xenograft models, and dose-dependently induced apoptosis. More importantly, PQR309 remarkably strengthened the anti-NPC function of gemcitabine both in vivo and in vitro. Mechanistically, PQR309 sensitized NPC to gemcitabine by increasing caspase pathway-dependent apoptosis, blocking GSK-3ß and STAT3/HSP60 signaling, and ablating epithelial-mesenchyme transition. Thus, targeting PI3K/mTOR using PQR309 might represent a treatment option to promote the response to gemcitabine in NPC, and provides a theoretical foundation for the study of targeted drugs combined with chemotherapy for NPC.


Assuntos
Neoplasias Nasofaríngeas , Fosfatidilinositol 3-Quinases , Fator de Transcrição STAT3 , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Gencitabina , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de MTOR , Inibidores da Angiogênese/farmacologia , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540673

RESUMO

Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Animais , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Fatores de Crescimento do Endotélio Vascular , Colesterol
7.
Arch Biochem Biophys ; 754: 109957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467357

RESUMO

OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Ratos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Zeaxantinas/farmacologia , Caspase 3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60489 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento Celular
9.
Bioorg Chem ; 146: 107278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484586

RESUMO

VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
10.
Ophthalmic Surg Lasers Imaging Retina ; 55(3): 156-162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466965

RESUMO

Indicated for colorectal cancer for decades, bevacizumab has been widely used off label to treat retinal diseases, and the benefits of its use, specifically in neovascular age-related macular degeneration, have been demonstrated in multiple clinical trials. The intravitreal delivery of bevacizumab requires it to be aseptically repackaged into individual syringes by compounding pharmacies for use in the eye. Although the repackaging process is permitted by the US Food and Drug Administration, the resultant product does not meet the specific standards of products approved for use as ophthalmic injectables nor is the parenteral innovator solution compliant with ophthalmic standards. Studies have also demonstrated variability in the quality and quantity of repackaged bevacizumab. This narrative review summarizes the evidence and discusses the role of off-label bevacizumab in the treatment and management of retinal diseases, its mechanism of action, current challenges and provides a critical appraisal of current evidence, clinical implications, and future directions. [Ophthalmic Surg Lasers Imaging Retina 2024;55:155-162.].


Assuntos
Degeneração Macular , Doenças Retinianas , Humanos , Bevacizumab/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Injeções , Degeneração Macular/tratamento farmacológico , Doenças Retinianas/tratamento farmacológico , Injeções Intravítreas
11.
Bioorg Med Chem ; 102: 117674, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457912

RESUMO

Controlling RAS mutant cancer progression remains a significant challenge in developing anticancer drugs. Whereas Ras G12C-covalent binders have received clinical approval, the emergence of further mutations, along with the activation of Ras-related proteins and signals, has led to resistance to Ras binders. To discover novel compounds to overcome this bottleneck, we focused on the concurrent and sustained blocking of two major signaling pathways downstream of Ras. To this end, we synthesized 25 drug-drug conjugates (DDCs) by combining the MEK inhibitor trametinib with Akt inhibitors using seven types of linkers with structural diversity. The DDCs were evaluated for their cell permeability/accumulation and ability to inhibit proliferation in RAS-mutant cell lines. A representative DDC was further evaluated for its effects on signaling proteins, induction of apoptosis-related proteins, and the stability of hepatic metabolic enzymes. These in vitro studies identified a series of DDCs, especially those containing a furan-based linker, with promising properties as agents for treating RAS-mutant cancers. Additionally, in vivo experiments in mice using the two selected DDCs revealed prolonged half-lives and anticancer efficacies comparable to those of trametinib. The PK profiles of trametinib and the Akt inhibitor were unified through the DDC formation. The DDCs developed in this study have potential as drug candidates for the broad inhibition of RAS-mutant cancers.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Inibidores da Angiogênese/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
12.
ACS Nano ; 18(11): 8392-8410, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450656

RESUMO

Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(ß-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Nanomedicina , RNA Mensageiro/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Fatores de Crescimento do Endotélio Vascular , Polímeros/uso terapêutico , Pulmão/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
13.
Biochem Biophys Res Commun ; 706: 149748, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38460450

RESUMO

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Assuntos
Bothrops , Células Endoteliais , 60573 , Animais , Feminino , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Bothrops/metabolismo , Metaloproteases/metabolismo , Venenos de Serpentes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inibidores da Angiogênese/farmacologia
14.
Cir Cir ; 92(1): 10-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537244

RESUMO

OBJECTIVE: The aim of the study is to show for the first time how aflibercept affects endometriosis lesions. MATERIAL AND METHODS: Surgically induced endometriosis in Wistar albino female rats. Rats with endometriosis were randomly divided into three groups: control (Co), aflibercept (Af), and leuprolide acetate (Le). Then, Af, aflibercept, and Le received leuprolide acetate. The control group was not treated. The weights and changes in intra-abdominal adhesions of the rats before and after treatment were recorded according to the Blauer adhesion score. Blood extracted for sacrifice was analyzed. Endometriotic lesions were evaluated for size, volume, histology, and immunohistochemistry (vascular endothelial growth factor [VEGF] and CD31). Significance level was accepted as p < 0.05. RESULTS: Aflibercept significantly reduced endometrial implant volume (p = 0.002). The explant epithelial histological score showed a significant difference between aflibercept and leuprolide acetate (p = 0.006) and between aflibercept and control groups (p = 0.002). Aflibercept decreased VEGF-H and CD31 expression (p = 0.001) more than leuprolide acetate. Aflibercept improved adhesions (p = 0.006). CONCLUSION: Aflibercept is more successful than leuprolide acetate in the treatment of endometriosis.


OBJETIVO: Mostrar por primera vez cómo afecta aflibercept a las lesiones de endometriosis. MATERIAL Y MÉTODOS: Endometriosis inducida quirúrgicamente en ratas hembras albinas Wistar. Las ratas con endometriosis se dividieron aleatoriamente en tres grupos: control (Co), aflibercept (Af) y acetato de leuprolida (Le). Luego, Af, aflibercept y Le recibieron acetato de leuprolida. El grupo de control no fue tratado. Los pesos y cambios en las adherencias intraabdominales de las ratas antes y después del tratamiento se registraron de acuerdo con la puntuación de adherencia de Blauer. La sangre extraída para el sacrificio fue analizada. Las lesiones endometriósicas se evaluaron en tamaño, volumen, histología e inmunohistoquímica (factor de crecimiento endotelial vascular [VEGF] y CD31). El nivel de significación se aceptó como p < 0.05. RESULTADOS: Aflibercept redujo significativamente el volumen del implante endometrial (p = 0.002). La puntuación histológica epitelial (EHS) del explante mostró una diferencia significativa entre aflibercept y acetato de leuprolida (p = 0.006) y entre los grupos de aflibercept y control (p = 0.002). Aflibercept disminuyó la expresión de VEGF-H y CD31 (p = 0.001) más que el acetato de leuprolida. Aflibercept mejoró las adherencias (p = 0.006). CONCLUSIÓN: Aflibercept tiene más éxito que el acetato de leuprolide en el tratamiento de la endometriosis.


Assuntos
Endometriose , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Feminino , Humanos , Ratos , Animais , Endometriose/complicações , Endometriose/tratamento farmacológico , Leuprolida/farmacologia , Leuprolida/uso terapêutico , Ratos Wistar , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular
15.
Chem Biol Drug Des ; 103(3): e14503, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38480495

RESUMO

Flubendazole, an FDA-approved anthelmintic, has been predicted to show strong VEGFR2 inhibitory activity in silico screening combined with in vitro experimental validation, and it has shown anti-cancer effects on some human cancer cell lines, but little is known about the anti-angiogenesis effects and anti-prostate cancer effects. In this study, we analyzed the binding modes and kinetic analysis of flubendazole with VEGFR2 and first demonstrated that flubendazole suppressed VEGF-stimulated cell proliferation, wound-healing migration, cell invasion and tube formation of HUVEC cells, and decreased the phosphorylation of extracellular signal-regulated kinase and serine/threonine kinase Akt, which are the downstream proteins of VEGFR2 that are important for cell growth. What's more, our results showed that flubendazole decreased PC-3 cell viability and proliferation ability, and suppressed PC-3 cell wound healing migration and invasion across a Matrigel-coated Transwell membrane in a concentration-dependent manner. The antiproliferative effects of flubendazole were due to induction of G2-M phase cell cycle arrest in PC-3 cells with decreasing expression of the Cyclin D1 and induction of cell apoptosis with the number of apoptotic cells increased after flubendazole treatment. These results indicated that flubendazole could exert anti-angiogenic and anticancer effects by inhibiting cell cycle and inducing cell apoptosis.


Assuntos
60489 , Mebendazol/análogos & derivados , Fator A de Crescimento do Endotélio Vascular , Humanos , Células PC-3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cinética , Movimento Celular , Proliferação de Células , Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
J Nanobiotechnology ; 22(1): 127, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520008

RESUMO

The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.


Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/química , Inibidores da Angiogênese/farmacologia , 60489 , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
17.
Keio J Med ; 73(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522916

RESUMO

Angiogenesis, the development of new blood vessels, is a fundamental physiological process. In addition, angiogenesis plays a key role in the pathogenesis of several disorders, including cancer and eye disorders such as diabetic retinopathy and age-related macular degeneration (AMD). However, identifying the regulators of angiogenesis proved challenging. Numerous factors that stimulated angiogenesis in various bioassays were identified, but their pathophysiological role remained unclear. In 1989, we reported the isolation and cloning of vascular endothelial growth factor (VEGF, VEGF-A) as an endothelial cell-specific mitogen and angiogenic factor. The tyrosine kinases Flt-1 (VEGFR-1) and KDR (VEGFR-2) were subsequently identified as VEGF receptors. Loss of a single vegfa allele results in defective vascularization and embryonic lethality in mice, emphasizing the essential role of VEGF in the development of blood vessels. Subsequently, we reported that anti-VEGF monoclonal antibodies block growth and neovascularization in tumor models. These findings paved the way for the clinical development of a humanized anti-VEGF antibody and other VEGF inhibitors for cancer therapy. To date, several VEGF inhibitors represent standard of care for colorectal cancer and other difficult to treat malignancies. VEGF is also implicated in intraocular neovascularization associated with retinal disorders as well as neovascular AMD. Our group developed a humanized anti-VEGF-A antibody fragment (ranibizumab) for the treatment of wet AMD. Ranibizumab not only maintained but also improved visual acuity and has been approved worldwide for the treatment of wet AMD and other neovascular disorders. Other VEGF inhibitors, including bevacizumab and aflibercept, have also resulted in significant clinical benefits. Today anti-VEGF drugs represent the most effective therapy for intraocular neovascularization. Current research addresses the need to reduce the frequency of intravitreal injections as well the identification of additional pro-angiogenic pathways that could result in improving therapeutic outcomes.


Assuntos
Neoplasias , Degeneração Macular Exsudativa , Animais , Camundongos , Ranibizumab/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , 60489 , Degeneração Macular Exsudativa/tratamento farmacológico , Acuidade Visual , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
18.
Int Immunopharmacol ; 131: 111850, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479157

RESUMO

Synovial angiogenesis is a key player in the development of rheumatoid arthritis (RA), and anti-angiogenic therapy is considered a promising approach for treating RA. CPD-002 has demonstrated efficacy in suppressing tumor angiogenesis as a VEGFR2 inhibitor, but its specific impacts on RA synovial angiogenesis and possible anti-RA effects need further study. We examined the influences of CPD-002 on the migration and invasion of human umbilical vein endothelial cells (HUVECs) and its impacts on HUVECs' tube formation and vessel sprouting ex vivo. The therapeutic potential of CPD-002 in adjuvant-induced arthritis (AIA) rats and its suppression of synovial angiogenesis were examined. The involvement of the VEGFR2/PI3K/AKT pathway was assessed both in HUVECs and AIA rat synovium. Here, CPD-002 inhibited the migration and invasion of VEGF-stimulated HUVECs, decreased their chemotactic response to RA fibroblast-like synoviocyte-released chemoattractants, and exhibited anti-angiogenic effects in vitro and ex vivo. CPD-002's targeting of VEGFR2 was confirmed with molecular docking and cellular thermal shift assays, supported by the abolishment of CPD-002's effects upon using VEGFR2 siRNA. CPD-002 relieved paw swelling, arthritis index, joint damage, and synovial angiogenesis, indicating its anti-arthritic and anti-angiogenic effects in AIA rats. Moreover, the anti-inflammatory effects in vivo and in vitro of CPD-002 contributed to its anti-angiogenic effects. Mechanistically, CPD-002 hindered the activation of VEGFR2/PI3K/AKT pathway in VEGF-induced HUVECs and AIA rat synovium, as evidenced by reduced p-VEGFR2, p-PI3K, and p-AKT protein levels alongside elevated PTEN protein levels. Totally, CPD-002 showed anti-rheumatoid effects via attenuating angiogenesis through the inhibition of the VEGFR2/PI3K/AKT pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60489 , Simulação de Acoplamento Molecular , Movimento Celular , Transdução de Sinais , Artrite Reumatoide/metabolismo , Células Endoteliais da Veia Umbilical Humana , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proliferação de Células
19.
Int J Nanomedicine ; 19: 1887-1908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414529

RESUMO

Introduction: Since intrinsic ocular barrier limits the intraocular penetration of therapeutic protein through eye drops, repeated intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents are the standard therapy for neovascular age-related macular degeneration (nAMD), which are highly invasive and may cause particular ocular complications, leading to poor patient compliance. Methods: Using Penetratin (Pen) as the ocular penetration enhancer and hyaluronic acid (HA) as the retina-targeting ligand, a dual-modified ophthalmic liposome (Penetratin hyaluronic acid-liposome/Conbercept, PenHA-Lip/Conb) eye drop was designed to non-invasively penetrate the ocular barrier and deliver anti-VEGF therapeutic agents to the targeted intraocular tissue. Results: PenHA-Lip effectively penetrates the ocular barrier and targets the retinal pigment epithelium via corneal and non-corneal pathways. After a single topical administration of conbercept-loaded PenHA-Lip (PenHA-Lip/Conb), the intraocular concentration of conbercept peaked at 18.74 ± 1.09 ng/mL at 4 h, which is 11.55-fold higher than unmodified conbercept. In a laser-induced choroidal neovascularization (CNV) mouse model, PenHA-Lip/Conb eye drops three times daily for seven days inhibited CNV formation and progression without any significant tissue toxicity and achieved an equivalent effect to a single intravitreal conbercept injection. Conclusion: PenHA-Lip efficiently and safely delivered conbercept to the posterior eye segment and may be a promising noninvasive therapeutic option for nAMD.


Assuntos
Peptídeos Penetradores de Células , Neovascularização de Coroide , Degeneração Macular , Camundongos , Animais , Humanos , Lipossomos/uso terapêutico , Inibidores da Angiogênese/farmacologia , Ácido Hialurônico , Fator A de Crescimento do Endotélio Vascular , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Degeneração Macular/tratamento farmacológico , Soluções Oftálmicas/uso terapêutico , Injeções Intravítreas
20.
Bioorg Chem ; 145: 107234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412650

RESUMO

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Assuntos
Antineoplásicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Sunitinibe/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Angiogênese/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...